erythrocyte sedimentation rate |
140 |
hemoglobin |
140 |
kawasaki disease |
140 |
meta-analysis |
140 |
mycoplasma |
140 |
pooled prevalence |
140 |
antibody |
099 |
igg3 |
099 |
immunoglobulin |
099 |
pfapa |
099 |
serum |
099 |
fibrosis |
052 |
questionnaire |
052 |
reliability |
052 |
scleroderma |
052 |
validity |
052 |
covid-19 |
010 |
cost analysis |
010 |
intravenous immunoglobulin |
010 |
ankylosing spondylitis |
123, 020, 115 |
aryl hydrocarbon receptor |
123 |
interlukin-17 |
123 |
t helper 17 |
123 |
fibromyalgia syndrome |
020 |
fibromyalgianess |
020 |
polysymptomatic distress scale |
020 |
rheumatoid arthritis |
020, 089 |
widespread pain |
020 |
choroidal thickness |
089 |
Δhrct |
089 |
artificial intelligence |
001 |
deep learning |
001 |
image analysis machine learning |
001 |
rheumatology |
001, 033 |
kinematics |
033 |
knee |
033 |
muscle strength |
033 |
osteoarthritis |
033, 081 |
rheumatic diseases |
033 |
bronchoalveolar lavage |
046 |
connective tissue disease |
046 |
high-resolution computer tomography |
046 |
interstitial lung disease |
046 |
progressive pulmonary fibrosis |
046 |
pulmonary function test |
046 |
genetic interaction |
060 |
primary sjögren’s syndrome |
060 |
ptpn22 |
060 |
tnfaip3 |
060 |
traf1-c5 |
060 |
adverse effects |
071 |
anti-il-17 |
071 |
anti-tnf&alpha |
071 |
psoriatic arthritis |
071 |
secukinumab |
071 |
corticosteroid |
081 |
hyaluronic acid |
081 |
monosodium iodoacetate |
081 |
unique cartilage matrix-associated protein |
081 |
axial spondyloarthropathy |
115 |
basdai |
115 |
disease activity |
115 |
sparcc score |
115 |
heart failure |
149 |
left ventricular global longitudinal strain |
149 |
systemic lupus erythematosus |
149 |
behçet’s disease |
107 |
inflammation |
107 |
tenascin-c |
107 |