

Periodontal Status and Disease Activity in Psoriatic Arthritis and Psoriasis: A Cross-Sectional Study

ABSTRACT

Background/Aims: Psoriatic arthritis (PsA) and psoriasis (PS) are chronic inflammatory disorders characterized by significant systemic involvement and comorbidities. This study investigated the occurrence of periodontitis among PS and PsA patients and evaluated its associations with clinical and demographic factors.

Materials and Methods: Comprehensive evaluations were performed, including the Maastricht Ankylosing Spondylitis Enthesitis Score (MASES) for all participants, along with PsA-specific assessments such as Psoriatic Arthritis and Composite Psoriatic Disease Activity Index (CPDAI). Dermatological and periodontal clinical parameters were recorded. The participants were organized into 2 groups: those with periodontitis and those without.

Results: The study included 128 participants: 62 with PS and 66 with PsA. Although the prevalence of periodontitis was higher among PsA patients compared with those with PS (46.97% vs 30.65%), this difference did not reach statistical significance ($P=.058$). Elevated CPDAI (odds ratio [OR]: 1.38; $P=.001$) and MASES (OR: 1.39; $P < .001$) scores were significantly associated with the presence of periodontitis in PsA patients.

Conclusion: In this study, patients with periodontitis demonstrated higher disease activity scores, underscoring the importance of incorporating periodontal assessment into the multidisciplinary management of psoriatic disease, particularly in patients with active disease.

Keywords: Comorbidity, periodontitis, psoriasis, psoriatic arthritis

Introduction

Psoriasis (PS) is a chronic inflammatory disease characterized by inflammation of the dermis and epidermis, arising from the interaction of environmental factors and genetic predispositions.¹ Its prevalence varies across countries, with global analyses reporting rates between 0.14% and 3%.² Psoriatic arthritis (PsA) is a chronic systemic inflammatory disease marked by joint and enthesial inflammation, affecting 0.1%-1% of the population and approximately 20% of individuals with PS.³ Psoriasis and PsA are linked to a spectrum of comorbidities, including diabetes, metabolic syndrome, cardiovascular diseases, and inflammatory bowel diseases, emphasizing the central role of inflammation in these conditions.⁴⁻⁷

Periodontitis is a chronic, multifactorial inflammatory disorder primarily affecting gingival tissues, initiated at the gingival sulcus and subsequently progressing to a localized but severe inflammatory milieu. As the disease

Bulent Akyuz¹
Hazel Durmus²
Huseyin Baytimur³
Oyku Tomay Aksoy⁴
Gizem Basak⁵
Ozlem Daltaban²
Erkan Alpsoy³
Ilhan Sezer¹
Cahit Kacar¹

¹Department of Rheumatology, Akdeniz University Hospital, Antalya, Türkiye

²Department of Periodontology, Akdeniz University Faculty of Dentistry, Antalya, Türkiye

³Department of Dermatology, Akdeniz University Hospital, Antalya, Türkiye

⁴Department of Rheumatology, Izmir Katip Celebi University Ataturk Education and Research Hospital, Izmir, Türkiye

⁵Department of Physical Medicine and Rehabilitation, Akdeniz University Hospital, Antalya, Türkiye

Corresponding author:

Bulent Akyuz
✉ drbulentakyuz@outlook.com

Received: July 14, 2025

Revision Requested: August 13, 2025

Last Revision Received:

November 5, 2025

Accepted: November 24, 2025

Publication Date: January 16, 2026

Cite this article as: Akyuz B, Durmus H, Baytimur H, et al. Periodontal status and disease activity in psoriatic arthritis and psoriasis: A cross-sectional study. *Arch Rheumatol*. 2026;41(1):14-21.

Copyright@Author(s) - Available online at archivesofrheumatology.com.
Content of this journal is licensed under a Creative Commons Attribution (CC BY) 4.0 International License.

advances, it compromises the integrity of the adjacent alveolar bone, leading to reductions in mineralized tissue density, loss of periodontal attachment, and an increased risk of irreversible tooth loss.⁸ Microorganisms such as *Porphyromonas gingivalis* play a pivotal role in the disease pathogenesis.⁹ Periodontitis is not limited to oral health issues but is also associated with systemic conditions such as diabetes, rheumatoid arthritis, and cardiovascular diseases.¹⁰⁻¹²

Recent epidemiological and clinical studies have reported that patients with psoriasis and psoriatic arthritis are at increased risk of developing periodontitis.¹³⁻²¹ However, findings across studies remain heterogeneous, and statistical significance has not always been consistently demonstrated. The underlying mechanisms linking these conditions are thought to involve shared inflammatory pathways. Proinflammatory cytokines such as IL(interleukin)-17 and TNF(tumor necrosis factor)- α have been implicated in both psoriatic disease and periodontitis, and the IL-23/IL-17 axis is considered a central contributor.²²⁻²⁸ While this study did not directly investigate immunological mediators, previous evidence suggests that common inflammatory mechanisms may contribute to the co-occurrence of these disorders.

Importantly, although the prevalence of periodontitis in psoriatic patients has been described, the relationships between disease activity indices and periodontal involvement have been less systematically explored. This gap provided the rationale for the present study, which aimed to evaluate the prevalence of periodontitis and its associations with disease activity scores, treatment characteristics, and demographic factors in cohorts of patients with psoriasis and psoriatic arthritis.

Materials and Methods

Study Population

A cross-sectional study design was employed to capture the association between periodontal disease and psoriatic disease activity at a single point in time. While this approach does not establish causality, it allows for a comprehensive assessment of potential correlations

MAIN POINTS

- *Periodontitis was more frequent in psoriatic arthritis than in psoriasis, without statistical significance.*
- *Higher Maastricht Ankylosing Spondylitis Enthesitis Score and Composite Psoriatic Disease Activity Index scores were significantly associated with periodontitis in psoriatic arthritis patients.*
- *Male sex, smoking, and enthesitis severity emerged as independent risk factors for periodontitis.*
- *Periodontal assessment ought to be integrated into the multidisciplinary care of psoriatic patients exhibiting high disease activity.*

in a well-defined cohort. This was a single-center study conducted at a tertiary-care hospital. The patients were recruited from the rheumatology and dermatology outpatient clinics of Akdeniz University Hospital, Antalya, Turkey. All eligible patients meeting the inclusion/exclusion criteria were invited to participate. Eligibility was restricted to participants aged 18 years and above. The participants included 66 patients who were diagnosed with PsA according to the Classification Criteria for Psoriatic Arthritis by a rheumatologist and 62 patients who were followed up for PS by a dermatologist. Exclusion criteria included pregnancy, diabetes, history of periodontal therapy within the last 6 months, and recent use of systemic antibiotics that could alter the periodontal microbiota in the past 3 months to minimize confounding factors. All participants involved underwent comprehensive examinations by a rheumatologist, dermatologist, and periodontist. The examiner conducting the periodontal assessments was blinded to each subject's PS or PsA status. No participants were excluded due to missing data.

Demographic data, including age, gender, body mass index (BMI) (kg/m²), comorbidities, smoking status, education level, disease duration, and medication history, were recorded for each participant. Comorbidities such as hypothyroidism, hypertension, cardiovascular events, depression, and asthma were noted.

Rheumatological assessments included recording the Health Assessment Questionnaire, Visual Analog Scale for pain (VAS-pain; 0-10, 0=no pain, 10=unbearable pain), and Maastricht Ankylosing Spondylitis Enthesitis Score (MASES) scores for all participants. Additionally, PsA patients had their Ankylosing Spondylitis Quality of Life, Composite Psoriatic Disease Activity Index (CPDAI), and Disease Activity for Psoriatic Arthritis (DAPSA) scores calculated. Dermatological evaluations recorded Psoriasis Area and Severity Index (PASI), Nail Psoriasis Severity Index (NAPSI), Dermatology Life Quality Index (DLQI), and Body Surface Area scores for all participants. Patients were divided into 2 groups according to their periodontal condition: those with periodontitis and those without.

Patients were categorized into 2 groups based on treatment: those receiving conventional disease-modifying antirheumatic drugs (DMARDs) only (methotrexate, sulfasalazine, or leflunomide) and those receiving biologic therapies (TNF, IL-17, or IL-23 inhibitors), administered either as monotherapy or in combination with conventional DMARDs (cDMARDs).

Laboratory Examinations

Blood plasma samples were obtained and analyzed for C-reactive protein (CRP) using a quantitative immuno-turbidimetric method, whereas the erythrocyte sedimentation rate was determined via the Westergren method.^{34,35}

Periodontal Parameters

The diagnosis of periodontitis was based on established clinical and radiographic criteria. A single experienced periodontist, blinded to psoriatic disease status, performed all examinations using a calibrated Williams probe.³⁶

The following parameters were recorded:³⁷

- Plaque Index (PI): assessed at 4 surfaces per tooth (score 0-3).
- Bleeding on probing: proportion of sites with bleeding after probing.
- Probing depth (PD): distance from the gingival margin to the pocket base at 6 sites per tooth.
- Clinical attachment level (CAL): distance from the cementoenamel junction to the pocket base, reflecting cumulative attachment loss.

Periodontitis was defined as interdental CAL loss at ≥ 2 non-adjacent teeth, in line with accepted case definitions. Radiographs were used to confirm alveolar bone loss.³⁷

Statistical Analysis

All the statistical analyses were conducted utilizing SAS 9.4 software (SAS Institute Inc., Cary, NC, USA). Descriptive statistics were expressed as mean \pm SD for variables with normal distribution and as median with interquartile range for those not following a normal distribution. The Shapiro-Wilk test was employed to evaluate the normality of continuous variables and skewness coefficients. Based on these assessments, variables that did not conform to normal distribution were analyzed using non-parametric methods. Differences between 2 independent groups were performed using Student's *t*-test for continuous variables with normally distributed data and the Mann-Whitney *U*-test was applied when normality assumptions were not met. Categorical variables were compared using the chi-square test or Fisher's exact test, depending on data distribution and sample size. From the logistic regression analysis, odds ratios (ORs) were calculated with a 95% CI. A *P*-value of less than .05 was considered indicative of statistical significance throughout analysis.

Ethical Approval

The study received approval from the Ethics Committee of Akdeniz University Hospital (Decision No.: KAEK-663, Project no.: TSA-2023-6258) on November 09, 2022, and was conducted in compliance with the Declaration of Helsinki. Written informed consent was obtained from all participants before enrollment.

Results

Among the 128 participants (76 females and 52 males; age: 20-73 years, mean \pm SD: 47.5 \pm 13.35 years), 62 had PS and 66 had PsA. An analysis of patient characteristics revealed no significant differences in gender distribution, smoking habits, or BMI between the groups. However,

comorbidities were more common in PsA patients (*P*=.0209). Periodontitis was detected in 46.97% of PsA patients (31/66) and 30.65% of PS patients (19/62); the difference was not statistically significant (*P*=.058) (Table 1).

Patients with PsA exhibited notably elevated scores in HAQ and MASES scores (*P* < .0001). Periodontal evaluations, encompassing metrics such as the PI, BOP, PPD, CAL, and tooth count, revealed a significant reduction in tooth count among PsA patients (*P*=.0072), whereas other parameters did not demonstrate a significant difference (Table 1).

Of the 128 participants, 50 were diagnosed with periodontitis. Comparative analysis between patients with and without periodontitis revealed that MASES scores were markedly higher in those diagnosed with periodontitis (*P*=.0002). Among PsA patients, those with periodontitis had significantly higher MASES and CPDAI scores than those without periodontitis (Table 2).

In a multivariable logistic regression model initially including age, sex, education level, smoking status, disease duration, comorbidity, BMI, and MASES score, backward elimination retained male sex, smoking, and MASES as independent predictors of periodontitis. Male was significantly associated with an increased risk of periodontitis compared to females (OR=4.79, 95% CI: 1.88-12.23, *P*=.001); in contrast, education level was not significant in the multivariate analysis (OR=2.33; 95% CI: 0.95-5.72; *P*=.066). Smokers had a 2.70-fold increased risk relative to non-smokers (OR=2.70, 95% CI: 1.14-6.41, *P*=.024), and each 1-point increment in MASES was associated with a 34% increase in periodontitis odds (OR=1.34 per point increase, 95% CI: 1.13-1.59, *P*=.001). In a subgroup analysis of PsA patients only, higher CPDAI scores were also independently associated with increased periodontitis risk (OR=1.38 per point increase, 95% CI: 1.14-1.66, *P*=.001) (Table 3). Treatment type was included in the multivariate model but showed no significant association with periodontitis (*P* > .05).

When analyzed based on the type of treatment, patients receiving biological therapy demonstrated significantly lower PASI, DLQI, and NAPSI scores compared to those receiving DMARDs (*P*=.001, *P*=.0248, and *P*=.029, respectively). However, no significant differences were observed in periodontal parameters such as PD or CAL between treatment groups (*P*=.2933 and *P*=.2037, respectively) (Supplementary Table 1).

Discussion

Earlier studies have established an association between periodontitis and psoriatic diseases;¹³⁻¹⁷ however, most have primarily addressed prevalence rather than the interplay between disease activity and periodontal involvement. Given the shared inflammatory pathways underlying these conditions, whether higher disease activity in PS and PsA contributes to an increased risk of

Table 1. Comparison of Demographic, Clinical, and Periodontal Parameters in Psoriasis and Psoriatic Arthritis Patients

Characteristics	PS (n=62)	PSA (n=66)	P
Age (years) (mean \pm SD, range)	48.5 \pm 13.25, (20.0, 73.0)	46.7 \pm 13.47, (21.0, 73.0)	.0088 ^a
Diagnosis duration (mean \pm SD, range)	16.1 \pm 10.62, (2.0, 50.0)	12.84 \pm 8.86, (1.0, 40.0)	.2094 ^a
BMI (mean \pm SD, range)	27.1 \pm 4.18, (17.6, 35.9)	28.9 \pm 4.69, (20.5, 42.2)	.4027 ^a
Gender (F/M)	32/30	44/22	.0831 ^b
Smoker, n (%)	26 (41.9)	25 (37.9)	.6394 ^b
Comorbidity, n (%)	12 (19.4)	25 (37.9)	.0209 ^b
Education level, n (%)			<.0001 ^b
≤High school	24 (38.7)	48 (72.7)	
>High school	38 (61.3)	18 (27.3)	
Periodontal diagnosis, n (%)			.0585 ^b
Periodontitis	19 (30.6)	31 (47.0)	
Without periodontitis	43 (69.4)	35 (53.0)	
Treatment type, n (%)			.0304 ^b
cDMARDs	30 (45.5)	40 (64.5)	
bDMARD	36 (54.5)	22 (35.5)	
HAQ	0.1 \pm 0.26, (0.0, 2.0)	0.3 \pm 0.43, (0.0, 2.2)	<.0001 ^a
MASES	1.1 \pm 1.74, (0.0, 7.0)	3.4 \pm 3.15, (0.0, 11.0)	<.0001 ^a
ESR	12.5 \pm 6.51, (2.0, 36.0)	15.5 \pm 9.33, (2.0, 47.0)	.0928 ^a
CRP	3.7 \pm 4.89, (0.6, 26.0)	5.7 \pm 8.25, (0.5, 42.9)	.1488 ^a
Number of teeth	24.4 \pm 4.66, (7.0, 28.0)	22.3 \pm 5.68, (2.0, 28.0)	.0072 ^a
PI	1.7 \pm 0.66, (0.3, 3.0)	1.6 \pm 0.67, (0.1, 3.0)	.2982 ^a
BOP	0.6 \pm 0.27, (0.1, 1.0)	0.6 \pm 0.29, (0.1, 1.0)	.8367 ^a
PD	2.4 \pm 0.71, (1.6, 5.0)	2.6 \pm 0.86, (1.2, 5.2)	.2177 ^a
CAL	2.4 \pm 0.72, (1.6, 5.0)	2.6 \pm 0.88, (1.2, 5.2)	.2466 ^a

bDMARD, biological disease-modifying antirheumatic drugs; BMI, body mass index; BOP, bleeding on probing; CAL, clinical attachment level; cDMARDs, conventional disease-modifying antirheumatic drugs; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; HAQ, Health Assessment Questionnaire; MASES, Maastricht Ankylosing Spondylitis Enthesitis Score; PD, pocket depth; PI, plaque index; PS, psoriasis.

^aMann-Whitney U P-value.

^bChi-square P-value.

periodontitis remains an important yet underexplored question. The present study aimed to evaluate the relationship between systemic inflammation, musculoskeletal disease burden, and periodontal health, thereby extending the current literature. Identifying such associations may support the integration of periodontal assessment into dermatologic and rheumatologic practice, ultimately contributing to multidisciplinary management strategies.

The Körbner phenomenon, characterized by lesion induction after trauma, suggests parallels with enthesitis, which may also arise from repetitive stress. Both processes share inflammatory pathways, notably IL-17 and TNF- α .^{8,24,26,27} Similarly, the periodontal ligament, which anchors the tooth to the alveolar bone, has been implicated in inflammatory mechanisms relevant to periodontitis,³⁸ thereby suggesting a potential enthesitis-related process. In the present cohort, MASES scores were higher among patients with periodontitis. Although prior studies have not directly examined the association between MASES and periodontitis, these

findings support a possible link. By contrast, 1 study in ankylosing spondylitis reported no significant correlation,³⁹ while another demonstrated strong associations between MASES and periodontal indices, including BOP and CAL.⁴⁰ Collectively, these findings underscore the need for further exploration of common inflammatory pathways bridging psoriatic disease, enthesitis, and periodontal pathology.

Although the prevalence of periodontitis was numerically higher in PsA than in PS patients, the difference did not reach statistical significance ($P=.0585$). This should therefore be regarded as a non-significant trend, and larger studies are needed to clarify this association. Indeed, Egeberg et al¹³ demonstrated in a large cohort that PsA patients exhibited a higher incidence of periodontitis than both PS patients and healthy controls.

In periodontitis, elevated levels of proinflammatory cytokines such as IL-1, IL-2, IL-6, IL-17, and TNF- α have been identified in gingival crevicular fluid, with a notable reduction following periodontal treatment.^{22-24,26} Similar

Table 2. Comparison of Demographic, Clinical, and Periodontal Parameters According to Periodontal Diagnosis

Periodontal Diagnosis	Periodontitis (n=50)	Without Periodontitis (n=78)	P
Age (years)	50.0 ± 12.64, (22.0, 73.0)	46.0 ± 13.64, (20.0, 71.0)	.1337 ^a
Gender (F/M)	22/28	54/24	.0046 ^b
Education level, n (%)			.032 ^b
≤High school	34 (68.0)	38 (47.7)	
>High school	16 (32.0)	40 (51.3)	
Smoker, n (%)	28 (56.0)	23 (29.5)	.0028 ^b
Treatment type, n (%)			.6248 ^b
cDMARDs	26 (52.0)	44 (56.4)	
bDMARD	24 (48.0)	34 (43.6)	
Diagnosis duration	13.4 ± 9.25, (1.0, 40.0)	14.6 ± 10.22, (1.0, 50.0)	.4405 ^a
BMI	28.0 ± 4.35, (17.6, 41.7)	28.2 ± 4.67, (17.6, 42.2)	.9825 ^a
HAQ	0.2 ± 0.39, (0.0, 2.2)	0.2 ± 0.38, (0.0, 2.0)	.2118 ^a
VAS-pain	2.8 ± 2.48, (0.0, 9.0)	2.0 ± 2.01, (0.0, 7.0)	.0763 ^a
MASES	3.4 ± 3.06, (0.0, 11.0)	1.6 ± 2.37, (0.0, 10.0)	.0002 ^a
ESR	13.9 ± 9.21, (2.0, 47.0)	14.1 ± 7.54, (2.0, 36.0)	.5589 ^a
CRP	5.1 ± 7.11, (0.5, 40.8)	4.5 ± 6.77, (0.6, 42.9)	.7012 ^a
Number of teeth	23.1 ± 5.59, (2.0, 28.0)	23.5 ± 5.13, (6.0, 28.0)	.6687 ^a
PI	1.9 ± 0.67, (0.5, 3.0)	1.5 ± 0.61, (0.1, 3.0)	.0005 ^a
BOP	0.7 ± 0.26, (0.3, 1.0)	0.5 ± 0.27, (0.1, 1.0)	.0003 ^a
PD	3.2 ± 0.77, (1.9, 5.2)	2.0 ± 0.30, (1.2, 2.8)	<.0001 ^a
CAL	3.2 ± 0.80, (1.9, 5.2)	2.0 ± 0.31, (1.2, 2.8)	<.0001 ^a
PASI	2.9 ± 4.52, (0.0, 19.2)	2.2 ± 3.74, (0.0, 19.5)	.5443 ^a
DLQI	5.3 ± 6.25, (0.0, 20.0)	4.9 ± 5.29, (0.0, 19.0)	.9777 ^a
NAPSI	2.5 ± 3.69, (0.0, 16.0)	1.4 ± 2.66, (0.0, 14.0)	.0923 ^a
BSA	2.7 ± 3.96, (0.0, 15.0)	2.2 ± 3.40, (0.0, 15.0)	.3875 ^a
Periodontal Diagnosis (PSA)	Periodontitis (n=31)	Without Periodontitis (n=35)	
Treatment type, n (%)			.5890 ^b
cDMARDs	13 (41.9)	17 (48.6)	
bDMARD	18 (58.1)	18 (51.4)	
MASES	4.4 ± 3.02, (0.0, 11.0)	2.5 ± 3.00, (0.0, 10.0)	.0057 ^a
BASDAI	2.7 ± 2.12, (0.0, 8.0)	2.8 ± 1.85, (0.0, 7.4)	.6616 ^a
ASQoL	3.6 ± 3.59, (0.0, 14.0)	3.5 ± 3.82, (0.0, 13.0)	.7802 ^a
DAPSA	15.2 ± 11.71, (2.0, 54.0)	11.6 ± 9.86, (2.0, 49.0)	.1238 ^a
CPDAI	4.8 ± 2.71, (0.0, 12.0)	2.8 ± 2.07, (0.0, 8.0)	.0016 ^a
PASI	2.1 ± 3.82, (0.0, 17.0)	1.4 ± 2.31, (0.0, 10.8)	.8782 ^a
DLQI	4.1 ± 5.85, (0.0, 19.0)	4.1 ± 5.01, (0.0, 18.0)	.9126 ^a
NAPSI	2.4 ± 4.09, (0.0, 16.0)	1.5 ± 3.01, (0.0, 14.0)	.6394 ^a

ASQoL, Ankylosing Spondylitis Quality of Life; bDMARD, biological disease-modifying antirheumatic drugs; BMI, body mass index; BOP, bleeding on probing; BSA, body surface area; CAL, clinical attachment level; cDMARDs, conventional disease-modifying antirheumatic drugs; CPDAI, Composite Psoriatic Disease Activity Index; CRP, C-reactive protein; DAPSA, Disease activity for psoriatic arthritis; DLQI, Dermatology Life Quality Index; ESR, erythrocyte sedimentation rate; HAQ, Health Assessment Questionnaire; MASES, Maastricht Ankylosing Spondylitis Enthesitis Score; NAPSI, Nail Psoriasis Severity Index; PASI, Psoriasis Area and Severity Index; PD, pocket depth; PI, plaque index; PS, psoriasis; VAS, Visual Analog Scale.

^aMann-Whitney U P-value.

^bChi-square P-value.

cytokine pathways are also central in the pathogenesis of PS and PsA.^{25,27,30} In this study, compared with patients receiving DMARD therapy, patients receiving biological

therapy presented significantly lower disease activity scores and CRP levels. However, in contrast to previous studies that suggested a potential protective effect

Table 3. Multivariate Logistic Regression for Periodontal Diagnosis

Parameters	Odds Ratios	95% CI	P
Gender (Male vs Female) [†]	4.79	1.88-12.23	.001
Education (≤High school vs. >High) [‡]	2.33	0.95-5.72	.066
Smoker (Yes vs. No) [§]	2.70	1.14-6.41	.024
MASES (per 1-point increase)	1.34	1.13-1.59	.001
CPDAI* (per 1-point increase)	1.38	1.14-1.66	.001

CPDAI, Composite Psoriatic Disease Activity Index; MASES, Maastricht Ankylosing Spondylitis Enthesitis Score.
[†]Reference = Female.
[‡]Reference = Education > High school.
[§]Reference = Non-smoker.
*Analyzed in PsA patients only.

of anti-TNF agents on periodontal health in ankylosing spondylitis^{41,42} and PsA,⁴³ these findings did not show a significant reduction in periodontitis frequency among biologics-treated patients. While biologics effectively suppress systemic inflammation, their role in modulating periodontal health remains uncertain. The lack of protective effect observed here may relate to differences in treatment duration, regimens, or patient characteristics. Future research should address the influence of immunosuppressive therapies, their mechanisms of action, and treatment timing on periodontal outcomes.

Using composite disease activity indices,⁴⁴ it was observed that higher CPDAI scores were significantly associated with the presence of periodontitis. Although data directly linking PsA disease activity to periodontal health remain scarce, these findings are consistent with broader evidence showing associations between disease activity measures and systemic comorbidities. For instance, a longitudinal study of 189 PsA patients linked elevated DAPSA scores to long-term health risks,⁴⁵ while severe periodontitis has been correlated with higher PASI scores in psoriasis.¹⁷ Taken together, these findings emphasize the potential clinical relevance of assessing comorbidities, including periodontal disease, in relation to psoriatic disease activity.

Previous studies have reported inconsistent results regarding tooth loss in psoriatic disease. A Norwegian study found a higher number of missing teeth in psoriasis patients compared with controls,¹⁸ whereas another study observed no difference among PS, PsA, and control groups.¹⁷ In the present cohort, PsA patients had fewer remaining teeth than those with PS, suggesting a greater overall oral health impact within the PsA group.

The strengths of this study include the use of multiple validated indices (CPDAI, DAPSA, and MASES) to comprehensively assess PsA disease activity and its correlation

with periodontal health. Nonetheless, several limitations must be acknowledged. The relatively modest sample size, the inclusion of smoking as a confounder,⁴⁶ and the absence of a healthy control group limit the generalizability of these findings. Additionally, the duration of biologic therapy was not recorded, which may influence periodontal outcomes and represents an additional limitation. Moreover, the cross-sectional design precludes causal inferences.

In conclusion, this cross-sectional study evaluated the prevalence of periodontitis in patients with PS and PsA and examined its associations with disease activity. Although PsA patients showed a higher prevalence of periodontitis, the difference did not reach statistical significance. Importantly, periodontitis was associated with higher disease activity indices, suggesting a link between systemic inflammation and periodontal involvement. These results highlight the potential value of incorporating periodontal assessment into the routine multidisciplinary care of patients with psoriasis and PsA. Future longitudinal studies with larger, well-characterized cohorts, including appropriate control groups, are warranted to clarify causal relationships and to determine whether targeted periodontal interventions may improve overall disease outcomes.

Data Availability Statement: The data that support the findings of this study are available on request from the corresponding author.

Ethics Committee Approval: Ethical committee approval was received from the Ethics Committee of Akdeniz University Hospital (Approval No.: KAEK-663; Date: November 09, 2022).

Informed Consent: Written informed consent was obtained from the participants who agreed to take part in the study.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept – C.K., E.A., I.S., O.D., B.A.; Design – B.A., O.T.A., H.D., H.B.; Supervision – C.K., O.D., E.A.; Resources – C.K.; Materials – B.A., G.B., O.T.A.; Data Collection and/or Processing – B.A., H.D., G.B., H.B., O.T.A.; Analysis and/or Interpretation – B.A., I.S., O.D.; Literature Search – B.A., C.K.; Writing Manuscript – B.A., G.B., H.D., H.B.; Critical Review – C.K., E.A., I.S., O.D. All authors have read and agreed to the published version of the manuscript.

Declaration of Interests: The authors have no conflicts of interest to declare.

Funding: This study is funded by the Akdeniz University Scientific Projects Coordination Unit (TSA-2023-6258).

References

1. Griffiths CE, Barker JN. Pathogenesis and clinical features of psoriasis. *Lancet*. 2007;370(9583):263-271. [\[CrossRef\]](#)

2. Parisi R, Iskandar IYK, Kontopantelis E, et al. National, regional, and worldwide epidemiology of psoriasis: systematic analysis and modelling study. *BMJ*. 2020;369:m1590. [\[CrossRef\]](#)
3. Karmacharya P, Chakradhar R, Oggie A. The epidemiology of psoriatic arthritis: A literature review. *Best Pract Res Clin Rheumatol*. 2021;35(2):101692. [\[CrossRef\]](#)
4. Lotti T, Hercogova J, Prignano F. The concept of psoriatic disease: can cutaneous psoriasis any longer be separated by the systemic comorbidities? *Dermatol Ther*. 2010;23(2):119-122. [\[CrossRef\]](#)
5. Gottlieb AB, Chao C, Dann F. Psoriasis comorbidities. *J Dermatol Treat*. 2008;19(1):5-21. [\[CrossRef\]](#)
6. Armstrong AW, Harskamp CT, Armstrong EJ. Psoriasis and the risk of diabetes mellitus: a systematic review and meta-analysis. *JAMA Dermatol*. 2013;149(1):84-91. [\[CrossRef\]](#)
7. Vlachos C, Gaitanis G, Katsanos KH, Christodoulou DK, Tsianos E, Bassukas ID. Psoriasis and inflammatory bowel disease: links and risks. *Psoriasis (Auckl)*. 2016;6:73-92. [\[CrossRef\]](#)
8. Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. *Trends Immunol*. 2014;35(1):3-11. [\[CrossRef\]](#)
9. Adler CJ, Dobney K, Weyrich LS, et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. *Nat Genet*. 2013;45(4):450-455. [\[CrossRef\]](#)
10. Sanz M, Marco del Castillo A, Jepsen S, et al. Periodontitis and cardiovascular diseases: consensus report. *J Clin Periodontol*. 2020;47(3):268-288. [\[CrossRef\]](#)
11. González-Febles J, Sanz M. Periodontitis and rheumatoid arthritis: what have we learned about their connection and their treatment? *Periodontol 2000*. 2021;87(1):181-203. [\[CrossRef\]](#)
12. Preshaw PM, Alba AL, Herrera D, et al. Periodontitis and diabetes: A two-way relationship. *Diabetologia*. 2012;55(1):21-31. [\[CrossRef\]](#)
13. Egeberg A, Mallbris L, Gislason G, Hansen PR, Mrowietz U. Risk of periodontitis in patients with psoriasis and psoriatic arthritis. *J Eur Acad Dermatol Venereol*. 2017;31(2):288-293. [\[CrossRef\]](#)
14. Mishra S, Johnson L, Agrawal S, Rajput S. Assessment of Periodontal status in Patients with Psoriatic Arthritis: A retrospective, case-control study. *J Clin Exp Dent*. 2021;13(8):e776-e783. [\[CrossRef\]](#)
15. Su NY, Huang JY, Hu CJ, Yu HC, Chang YC. Increased risk of periodontitis in patients with psoriatic disease: a nationwide population-based retrospective cohort study. *PeerJ*. 2017;5:e4064. [\[CrossRef\]](#)
16. Zhang X, Gu H, Xie S, Su Y. Periodontitis in patients with psoriasis: A systematic review and meta-analysis. *Oral Dis*. 2022;28(1):33-43. [\[CrossRef\]](#)
17. Costa AA, Cota LOM, Esteves Lima RPE, et al. The association between periodontitis and the impact of oral health on the quality of life of individuals with psoriasis and psoriatic arthritis. *PLOS One*. 2024;19(6):e0301158. [\[CrossRef\]](#)
18. Preus H, Khanifam P, Kolltveit K, et al. Periodontitis in psoriasis patients: a blinded, case-controlled study. *Acta Odontol Scand*. 2010;68(3):165-170. [\[CrossRef\]](#)
19. Lazaridou E, Tsikrikoni A, Fotiadou C, et al. Association of chronic plaque psoriasis and severe periodontitis: a hospital based case-control study. Wiley Online Library. *J Eur Acad Dermatol Venereol*. 2012;27(8):967-972. [\[CrossRef\]](#)
20. Skudutyte-Rysstad R, Slevolden EM, Hansen BF, Sandvik L, Preus HR. Association between moderate to severe psoriasis and periodontitis in a Scandinavian population. Springer. *BMC Oral Health*. 2014;14:139. [\[CrossRef\]](#)
21. Üstün K, Sezer U, Kisacik B, et al. Periodontal disease in patients with psoriatic arthritis. Springer. *Inflammation*. 2013;36(3):665-669. [\[CrossRef\]](#)
22. Zhao L, Zhou Y, Xu Y, Sun Y, Li L, Chen W. Effect of non-surgical periodontal therapy on the levels of Th17/Th1/Th2 cytokines and their transcription factors in Chinese chronic periodontitis patients. *J Clin Periodontol*. 2011;38(6):509-516. [\[CrossRef\]](#)
23. de Oliveira RR de, Schwartz-Filho HO, Novaes AB, et al. Antimicrobial photodynamic therapy in the non-surgical treatment of aggressive periodontitis: cytokine profile in gingival crevicular fluid, preliminary results. *J Periodontol*. 2009;80(1):98-105. [\[CrossRef\]](#)
24. Thunell DH, Tymkiw KD, Johnson GK, et al. A multiplex immunoassay demonstrates reductions in gingival crevicular fluid cytokines following initial periodontal therapy. *J Periodont Res*. 2010;45(1):148-152. [\[CrossRef\]](#)
25. Yeremenko N, Paramarta JE, Baeten D. The interleukin-23/interleukin-17 immune axis as a promising new target in the treatment of spondyloarthritis. *Curr Opin Rheumatol*. 2014;26(4):361-370. [\[CrossRef\]](#)
26. Holmlund A, Hänström L, Lerner UH. Bone resorbing activity and cytokine levels in gingival crevicular fluid before and after treatment of periodontal disease. *J Clin Periodontol*. 2004;31(6):475-482. [\[CrossRef\]](#)
27. Menon B, Gullick NJ, Walter GJ, et al. Interleukin-17+CD8+ T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression. *Arthritis Rheumatol*. 2014;66(5):1272-1281. [\[CrossRef\]](#)
28. Leijten EFA, van Kempen TS, Boes M, et al. Brief report: enrichment of activated Group 3 innate lymphoid cells in psoriatic arthritis synovial fluid. *Arthritis Rheumatol*. 2015;67(10):2673-2678. [\[CrossRef\]](#)
29. Dalmády S, Kemény L, Antal M, Gyulai R. Periodontitis: a newly identified comorbidity in psoriasis and psoriatic arthritis. *Expert Rev Clin Immunol*. 2020;16(1):101-108. [\[CrossRef\]](#)
30. Mease PJ. Inhibition of interleukin-17, interleukin-23 and the TH17 cell pathway in the treatment of psoriatic arthritis and psoriasis. *Curr Opin Rheumatol*. 2015;27(2):127-133. [\[CrossRef\]](#)
31. Oggie A, Schwartzman S, Husni ME. Recognizing and managing comorbidities in psoriatic arthritis. *Curr Opin Rheumatol*. 2015;27(2):118-126. [\[CrossRef\]](#)
32. Yamazaki F. Psoriasis: comorbidities. *J Dermatol*. 2021;48(6):732-740. [\[CrossRef\]](#)
33. Linden GJ, Lyons A, Scannapieco FA. Periodontal systemic associations: review of the evidence. *J Clin Periodontol*. 2013;40(suppl 14):S8-S19. [\[CrossRef\]](#)
34. Pohanka M. Diagnoses based on C-reactive protein point-of-care tests. *Biosensors*. 2022;12(5):344. [\[CrossRef\]](#)
35. Lapić I, Piva E, Spolaore F, Tosato F, Peloso M, Plebani M. Automated measurement of the erythrocyte sedimentation rate: method validation and comparison. *Clin Chem Lab Med*. 2019;57(9):1364-1373. [\[CrossRef\]](#)
36. Silness J, Löe H. Periodontal disease in pregnancy. II. Correlation between oral hygiene and periodontal CONDITION. *Acta Odontol Scand*. 1964;22:121-135. [\[CrossRef\]](#)
37. Joss A, Adler R, Lang NP. Bleeding on probing. A parameter for monitoring periodontal conditions in clinical practice. *J Clin Periodontol*. 1994;21(6):402-408. [\[CrossRef\]](#)

38. de Jong T, Bakker AD, Everts V, Smit TH. The intricate anatomy of the periodontal ligament and its development: lessons for periodontal regeneration. *J Periodont Res.* 2017;52(6):965-974. [\[CrossRef\]](#)
39. Enginar AÜ, Daltaban Ö, Kacar C, Tuncer T. Relationship between periodontal status and disease activity in patients with ankylosing spondylitis. *Reumatologia.* 2021;59(1):35-40. [\[CrossRef\]](#)
40. Daltaban Ö, Enginar AÜ, Üstün K, Hatipoğlu M, Kaçar C, Tuncer T. Evaluating the relationship between ankylosing spondylitis and periodontal disease: a case-control study. *Clin Oral Investig.* 2023;27(1):411-420. [\[CrossRef\]](#)
41. Fabri GMC, Pereira RMR, Savioli C, et al. Periodontitis response to anti-TNF therapy in ankylosing spondylitis. *J Clin Rheumatol.* 2015;21(7):341-345. [\[CrossRef\]](#)
42. Kang EH, Lee JT, Lee HJ, et al. Chronic periodontitis is associated with spinal dysmobility in patients with ankylosing spondylitis. *J Periodontol.* 2015;86(12):1303-1313. [\[CrossRef\]](#)
43. Ancuta C, Ancuta E, Chiriac R, et al. TNF Inhibitors and Periodontal Inflammation in Psoriatic Arthritis.
44. Leung YY, Tillett W, de Wit M, et al. Initiating evaluation of composite outcome measures for psoriatic arthritis: 2022 updates from the GRAPPA-OMERACT working group. *J Rheumatol.* 2023;50(suppl 2):53-57. [\[CrossRef\]](#)
45. Lam SHM, Cheng IT, Li EK, et al. DAPSA, carotid plaque and cardiovascular events in psoriatic arthritis: a longitudinal study. *Ann Rheum Dis.* 2020;79(10):1320-1326. [\[CrossRef\]](#)
46. Camelio-Castillo AJ, Mira A, Pico A, et al. Subgingival microbiota in health compared to periodontitis and the influence of smoking. *Front Microbiol.* 2015;6:119. [\[CrossRef\]](#)

Supplementary Table 1. Associations of Treatment Type with Disease Activity and Periodontal Parameters in PS and PSA Patients

Medication	DMARDs (n:70)	Biological therapy (n:58)	P
Age	46.7±13.47, (21.0, 73.0)	48.5±13.25, (20.0, 73.0)	0.5134 ^a
Diagnosis duration	12.84±8.86, (1.0, 40.0)	161±10.62, (2.0, 50.0)	0.0355 ^a
ESR	15.0±7.44, (3.0, 36.0)	12.8±8.93, (2.0, 47.0)	0.0351 ^a
CRP	5.8±7.09, (0.5, 40.8)	3.5±6.47, (0.6, 42.9)	0.0007 ^a
Number of teeth	23.9±4.54, (7.0, 28.0)	22.6±6.08, (2.0, 28.0)	0.3802 ^a
PI	1.7±0.65, (0.6, 3.0)	1.6±0.69, (0.1, 3.0)	0.5784 ^a
BOP	0.6±0.28, (0.1, 1.0)	0.6±0.29, (0.1, 1.0)	0.8700 ^a
PD	2.6±0.84, (1.7, 5.0)	2.4±0.73, (1.2, 5.2)	0.2933 ^a
CAL	2.6±0.84, (1.7, 5.0)	2.4±0.76, (1.2, 5.2)	0.2037 ^a
PASI	3.2±4.50, (0.0, 19.5)	1.5±3.25, (0.0, 19.2)	0.0010 ^a
DLQI	6.0±6.03, (0.0, 20.0)	3.8±4.96, (0.0, 19.0)	0.0248 ^a
NAPSI	2.2±3.21, (0.0, 16.0)	1.4±3.03, (0.0, 14.0)	0.0290 ^a
BSA	3.4±4.26, (0.0, 15.0)	1.2±2.19, (0.0, 10.0)	0.0004 ^a
Medication (PSA)	DMARDs (n:30)	Biological therapy (n:36)	
BASDAI	2.6±1.65, (0.0, 6.0)	2.9±2.21, (0.0, 8.0)	0.9332 ^a
ASQoL	3.6±3.56, (0.0, 13.0)	3.5±3.84, (0.0, 14.0)	0.5070 ^a
DAPSA	14.2±11.12, (2.0, 54.0)	12.6±10.69, (2.0, 49.0)	0.3766 ^a
CPDAI	3.6±2.33, (0.0, 8.0)	3.9±2.80, (0.0, 12.0)	0.7751 ^a

ASQoL - Ankylosing Spondylitis Quality of Life, DAPSA - Disease Activity for Psoriatic Arthritis, CPDAI - Composite Psoriatic Disease Activity Index, PI - Plaque Index, PD - probing Pocket Depth, CAL - Clinical Attachment Level, BOP - Bleeding on Probing, CRP - C-reactive protein, ESR - erythrocyte sedimentation rate, PASI - Psoriasis Area and Severity Index, DLQI - Dermatology Life Quality Index, NAPSI - Nail Psoriasis Severity Index, BSA - Body Surface Area, DMARDs - disease-modifying antirheumatic drugs.

^aMann-Whitney U P-value.